Gaussian binomial coefficients modulo cyclotomic polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coefficients of cyclotomic polynomials

Let a(n, k) be the k-th coefficient of the n-th cyclotomic polynomial. Recently, Ji, Li and Moree [12] proved that for any integer m ≥ 1, {a(mn, k)|n, k ∈ N} = Z. In this paper, we improve this result and prove that for any integers s > t ≥ 0, {a(ns + t, k)|n, k ∈ N} = Z. 2000 Mathematics Subject Classification:11B83; 11C08

متن کامل

Cyclotomic polynomials with large coefficients

The coefficients a(m,n) and especially A(n) and S(n) have been the subject of numerous investigations (see [1] and the references given there). Until recently all these investigations concerned very thin sets of integers n. In [3] the author could establish a property valid for a set of integers of asymptotic density 1. Let ε(n) be any function defined for all positive integers such that limn→∞...

متن کامل

PRODUCTS OF BINOMIAL COEFFICIENTS MODULO p 2

As usual Z, Q, R and C denote the ring of integers, the rational field, the real field and the complex field respectively. We also let Z = {1, 2, 3, · · · } and C∗ = C \ {0}. For a ∈ Z and n ∈ Z, by (a, n) we mean th greatest common divisor of a and n, if n is odd then the Jacobi symbol ( a n ) is defined in terms of Legendre symbols (see, e.g. [IR]). For x ∈ R, [x] and {x} stand for the integr...

متن کامل

On Cyclotomic Polynomials with ± 1 Coefficients

We characterize all cyclotomic polynomials of even degree with coefficients restricted to the set {+1,−1}. In this context a cyclotomic polynomial is any monic polynomial with integer coefficients and all roots of modulus 1. Inter alia we characterize all cyclotomic polynomials with odd coefficients. The characterization is as follows. A polynomial P (x) with coefficients ±1 of even degree N − ...

متن کامل

Values of coefficients of cyclotomic polynomials II

Let a(n, k) be the kth coefficient of the nth cyclotomic polynomial. In part I it was proved that {a(mn, k) | n ≥ 1, k ≥ 0} = Z, in case m is a prime power. In this paper we show that the result also holds true in case m is an arbitrary positive integer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2016

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2016.04.005